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Abstract

We describe the spaces obtained by applying the interpolation methods associated to polygons to
N-tuples of weighted.”-spacesN-tuples of classical Lorentz spaces and some atfwuples of
function spaces.
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1. Introduction

Interpolation of Banacl-tuples is a question that has been of interest from the beginning
of abstract interpolation theory. It was considered for the first time in 1961 by Foias and
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Lions[21]. Since then, several authors have investigated extensions of the main interpolation
methods taV-tuples. Concerning the extension of the real method, we refer, for example,
to the papers of Yoshikawa8], Sparf{26], Fernandef19,20]and the paper by Peetre and
one of the present authdik5]. The case of the complex method was considered by Favini
[18]. More information on these multidimensional methods can be found in the article by
Cwikel and JansofiL6] and in the monograph by Brudnyl and Kruglji&f.

The step from two to several spaces involves considerable difficulties, to the effect that

basic results in the classical theory for couples are no longer true in genenalttgles.

For example, the equivalence betwelerand K -constructions fails. Duality is another dif-

ficult point, because duals of these spaces may fail to be intermediate spaces with respect
to the dualN-tuple. However, interpolation methods fdrtuples still have important ap-
plications in analysis. For instance, they are useful in the investigation of function spaces
with dominating mixed derivatives (s§26,5]). They have arole in the development of the
classical theory for couples, as it was shown by Asekritova and Krugljakorking with

function spaces, the multidimensional approach is sometimes even more useful than the
usual approach by means of couples, as it is pointed out in the article of Asekritova et al.
[2].

In this paper, we deal withandK interpolation methods introduced by Cobos and Peetre
[15], which are similar to the real method but incorporating some geometrical elements.
They are defined by means of a convex polyd@be= P1 - - - Py, an interior point(a, f§) of
IT and a scalar parametgre [1, oco]. The Banach spaces of thetuple should be thought
of as sitting on the verticeB; of II.

The motivation of Cobos and Peetre for introducing these methods was to follow a new
geometrical approach which, on one hand, closes the gap between the ideas of real and
complex interpolation, and on the other hand, it gives a unified point of view for other
multidimensional methods. Indeed,If is equal to the simplex, these methods give back
(the first nontrivial case of) spaces studied by Spaé], and if IT is equal to the unit
square, we recover spaces considered by Ferndh€lg0]. The resulting theory faland
K methods defined by polygons highlights the geometrical aspects of the classical theory
of real interpolation for couples. See, for example, besjdg} the papers by Cobos et
al.[14], Cobos and Fernandez-Martir{8z10], Cobos et a[13], Carro et al[6], Ericsson
[17] and Cobos et a[12].

Sometimes applying multidimensional methods toNatuple one gets spaces that can
be also obtained by using the real method repeatedlyjZ6¢25,13]). But this is not always
the case. For example, it was shown 18], Theorem 2.3, that interpolating thé-tuple
of L°°-spaces with weight6L*°(w1), ..., L*(wy)) by the K-method associated to the
polygon I, the point(a, f) andg = oo, then the outcome i&*°(w, g), the weighted
L*°-space defined by

Wy, p(x) = Min{w{’ (x)wj-" Ow(x) : {i, j kY € Pyl

Here, P, s is the set of all those triple§, j, k} such that(«, ) belongs to the triangle
with verticesP;, P;, P, and(c;, cj, ;) stands for the barycentric coordinates(ef f3)

with respecttaP;, P;, Py. They also established a similar formula fétuples of weighted
L1-spaces when they are interpolated by fhmethod withg = 1. In this case the weight
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turns out to be
Wy, p(x) = max{w;" (x)w ’(x)w,f(x) {i, .k} € Pyp}

These two formulae are genuine resultsfotuples, since they cannot be derived by using
the real method again and again.

The aim of this paper is to continue their research by characterizing the spaces that arise
by interpolatingN -tuples of L”-spaces with weights by th&- and J-methods and any
1<p = g<oo. As we shall show, in the special case whérefs) does not lie on any
diagonal off1, the new formulae only involve the functiois, s andw, g. They are a new
genuineN-tuple results. We also study the caseNotuples formed by classical Lorentz
spaceS/l = (A” A" ). Here, ¢; stands for the fundamental function of thh
space(j = 1,. N) If (oc ,8) does not belong to any dlagonaIHf then the resulting
spaces are Lorentz spaces with fundamental funcmryﬁand cpa - These function are
defined in the same way that, s andw, g but replacingw; by qﬁ If the point (o, )
belongs to some diagonal &f, the outcome are weighted spaces (respectively, Lorentz
spaces), but with much more involved weights (respectively, fundamental functions).

The dichotomy between to lie or not to lie in any diagonal opens a new line for further
research: to clarify the role of the geometry of the polygon.

We also characterize thogeé-tuples of weighted.”-spaces for which th&- and J-
spaces coincide. This result is particularly interesting since even on siviplples the/-
and K -spaces might not be equal (see, for examlé, Example 3.4]).

To establish these results, we start by computindstHenctional forN-tuples of Lorentz
classes associated to Banach function spaGe§j = 1, ..., N). The concept of Lorentz
classA?-9(X) has been introduced recently by Cerda, Coll and one of the present authors
[8]. The main advantage of working with these classes is that in the arguments it suffices
to deal with characteristic functions. Then, as an application of these results, we determine
the spaces obtained by interpolationMftuples of weighted.”-spaces, and/-tuples of
classical Lorentz spaces.

The paper is organized as follows. In Section 2, we recall the definitions aind
K-methods defined by means of polygons and some of their basic properties. We also
introduce in there the Lorentz classes. In Section 3, we comput’ thumctional for N-
tuples of Lorentz classes, and we determine the spaces obtained by applykhgrtetnod
to an N-tuple of A”9-spaces. Section 4 contains tke and J-results for weighted.”-
tuples. We also study there the coincidence ofthandK -spaces oV -tuples of weighted
LP-spaces, establishing the necessary and sufficient condition for the equality in terms of
the weights. Finally, in Section 5, we determine the spaces obtained frovitaple of
classical Lorentz spaces.

2. Preliminaries
Let IT = Py --- Py be a convex polygon in the plari@?. The vertices ofl 7 are P; =

(xj,y)) (j =1---N). Let A = (A1,..., Ay) be aBanach N-tuple, that is, a family of
N Banach spaces all of them continuously embedded in a common linear Hausdorff space.
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We can imagine each spade as sitting on the verteR;. By means of the polygoil we
define the following family of norms ob (A) = A1+ --- + Ap:
K(t,s;a)=K(t,s;a; A)

N N
=inf thfsyfﬂaj”A,.:a:Zaj, ajeAj¢, t,s>0.

Similarly onA(A) = A1 N ---N Ay we can consider the family of norms

J(t,s;a) = J(@,s;a; A) = max {t¥sVi t,s > 0.
t.s;a)=J@t s;a;A) = 1 N{ s'lalla;}, ts >

NPAS

Let now(a, f5) be aninterior point ofI [(o, ) € Int IT] and let 1< g <oco. TheK -space
A(x p.q:k 1S defined as the collection of alle Z(A) for which the norm

1/q
lallwp).q:x = (/ / ¢ % PR, 5:a))1 — di d?)

is finite.
TheJ-spaceA , g . is formed by all those elementse Y (A) for which there exists
a strongly measurable function= u(s, r) with values inA(A) such that

a=/oo /00 u(t,s)ﬂd—s 1)
o Jo rs
00 00 1/q
</ / ﬁJ(t s;u(t,s))? — di ds) < 0. (2)
0 0 S

The norm oM, g 4./ is

1/q
lallp).q;0 = inf {(/ / s Pu, s u@, 5)))? = a d;) }

where the infimum is taken over all representatigatisfying (1) and (2).

The real interpolation spacéAo, A1)y, (see[4,27]) can be seen as the “limit case”
when the polygon degenerates into the segrfterit]. Recall that given any Banach couple
(Ao, A1) the spacéAo, A1)y, (0 <0 <1,1<g<00)is

and

(Ao, Al)@,q ={aeApg+A1: Ha”@,q = (L (t~ K(na))q 7) <oo},

whereK (t, a) = inf{|laoll4, + tllailla, : @ = ao + a1, a; € Aj}. The spacéAo, A1)y,
can be also described in terms of théunctional J (1, a) = maxX{||al| 4. tllall 4, }. It turns
out that

00 dt o] 0 dt 1/q
(Ao, A1)y = ya =/ ut)—: (/ (It u(n))? —) <00
' 0 t 0 t
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and|| - [l9,4 is equivalent to

. ® dr\"4 % dr
lallg.g.s = inf (/ (Tt u()))? —) ra= / u(t)—¢ .
0 t 0 t

In contrast with the case of couplek; and J-methods forN-tuples(~N >3) do not
coincide in general. We only have th‘% Bg:d < A(a p).q:K » Where— means continuous
inclusion.

If IT = Pj, --- P;, is another convex polygon whodé vertices all belong tdI, we
can form theM-subtupled = (Ajl, ..., Aj,) by selecting fromA those spaces sitting on
vertices off]. We designate b;((t s; ,A) andJ(z, s; -; A) thek - andJ-functional defined
by means of 1 overZ(A) andA(A), respectively. Fota, f) € Int IT and 1< g < 00, we
denote byA(a,/j),q;K andA(a,/;),q;, the interpolation spaces defined Ayover A. The next
result follows easily from inequalities

K(t,s;a;/i)é[%(t,s;a; /i) if ae Z(A~),
J(t,s:a: A< J(@t,s;a; A) if a e AA).

Lemma 2.1. Let(x, §) € Int IT and 1< g < oo. Then the following continuous inclusions
hold

A(a,ﬁ),q;l = m A(a,ﬁ),q;l = Z A(a,ﬁ),q;K = A(%/)’),q;K
1 1
where the intersection and the sum are taken over all convex polyGandT with («, f) €
Int I1.

If ¢ =1 or g = o0, we have the following result (s¢&1, Theorem 1.5]).

Lemma 2.2. If (o, ) lies on some diagonal df, then

Ap.p 1 = ﬂ (Ai, A, 1 = Z (Ais AR, .00 = Aok -
{i.k}eD {i,k}eD

Here,D denotes the set of all couplésk} such that(«, ) belongs to the diagonal joining
P; and Pg, and for{i, k} € D, 0;x is the unique numbed < 0; x < 1 such that(x, ) =
1= 0i ) Pi + 0 i Px.

Sometimes, we shall need to work wit+tuples formed by quasi-Banach spaces. In
this caseX (¢, s; -) and J (¢, 5; -) are only quasi-norms, andl, g ,.x andA, g ,.; are
guasi-Banach spaces. The domain of definitiog cén be extended, namely<0¢ < co.

Let (Q, v) be ao-finite measure space. We denote bY = L%w) the space of all
(equivalence classes afymeasurable functions d@ which are finite almost everywhere.
If f e L9, its distribution functionis defined byu,(t) = v({x : [f(x)| > t}), and its
decreasing rearrangemehy f*(s) = inf{r : u (1) <s}.
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Subsequently, we shall work with Banach spaXesé(equivalent classes of ) measurable
functions onQ with the following properties:

(i) Whenever € LY, f € X and|g|<|f|theng € X and||g|lx <| f | x (lattice property).
(i) 0 < fu(w) 1 f(w) a.e.then| fullx 1 |l fllx (Fatou property).

We put| fllx = coif f ¢ X.

If the norm of a Banach space E of measurable function€ @mequivalent to a norm
satisfying (i) and (ii), then we say th&tis aBanach function spaces. We shall also deal
with guasi-Banach function spaceghich are defined analogously but with ||x being
only a quasi-norm.

Examples of Banach function spaces afespaces for ¥ p <oo and L?-? spaces for
1< p < o0 and 1< g <oo. Recall that

1 oo dr\ M
LPa — {f ||f||pq:(;A (tl/Pf*(l))th) <oo}.

If0 < p < ocoand 0< g <oo then spaceé” 7 are quasi-Banach spaces.
Lorentz classest” 4 (X) (for 1< p,q < oo) associated to a Banach function spxce
will be of special interest for us. They are defined (Bigby the condition

00 N Ip 1/q
I fllapacxy = </0 Y g s 1% dy) < 00.

The functional - || 4».4(x) is not a norm in general, but only a quasi-norm. Propertieé of
yield that47°9(X) is a quasi—Banach function space. Bupit- 1 thenA”:9(X) does is a
Banach function space because it can be obtained by real interpolation betaeeh>.
Namely (se¢8, Theorem 6])

(X,L?)pq = A"1(X), 0= (p—1D/p.

In what follows we writeA?(X) = A”?(X). If p = 1, a simple computation shows
that |41l g1y = l2allx- HenceA'(A'(X)) = A%(X). Moreover, by Cerda et aJg],

AY(X) = X.Ingenerald'(X) is not a normed space (sg% Theorem 1]) but iff, g € L°
are nonnegative and disjointly supported functions, then,.,; = x( -y} t Z(¢>,; and
so triangle inequality holds for these vectors

If+ g“Al(X) < ”f”Al(X) + ”g”/ll(X)' (3)

Next, we give an example where Lorentz classes can be calculated easilyégld
functionw(x) we mean any positive-measurable function of.

Example 2.1. Let 1< p, ¢ < oo and letL?9(w) be the weighted Lorentz space, which is
defined by using the measuredv instead oldv. Then

AP (LY (w)) = LP9 (w).
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Indeed, we have
q Oo 1 q/p 1 q
||f||/1p’q(Ll(w)) = /0‘ yq ||X{\f|>y}||Ll(w) dy = 5 “fHLqu(w)'

A Banach function spac¥ is said to berearrangement invariantor r.i. in short) if
wheneverf € X andg is equimeasurable with theng € X and|gllx = || fllx.- The
fundamental functioof the r.i. spacé&is defined by

dx® = llxplx, whereD C Q with v(D) = t.

An important example of r.i. spaces are the Lorentz spacesidfan increasing concave
function on(0, co) such that¢(0+) = 0, then the Lorentz space A, consists of all

functionsf € L% which have a finite norm

17ls, = /O £5(5) dp(s)

(see[24,22,3]). The fundamental function of,, coincides with¢. The spacel,, is the
smallest of all r.i. spaces with fundamental functipiWheneg (1) = /7, thend, = L7,
The next example describes the relationship between Lorentz spaces and Lorentz classes.

Example 2.2. We have

Indeed, by Krein et a[22], p. 11301 flla, = f0°° $(us(s))ds. Whence, equality follows

by using thaip(u s (s)) = 17 1)1l 4, -
In a more general way, for any r.i. spa¥estill holds thatqu(uf(s)) = g fs5yllx-

Consequently, itpy (0+) = 0, then|| fll j1x, = fo~ Px () ds = I fll4 sy Thatis,
AYX) = Ay, .

For 0 < r < oo, ther-convexificationX ) of the Banach function spacéis defined by

1
XO =(feL’: | fllxo = IFINY < oo},

The spacgX ™, || - || y«) is @ Banach function spacerif> 1 (see[23]). The next result
shows that anyl?'?-class can be realized asfd-class over thé&p/q)-convexification. It
is a consequence of equality

S 1/p S N 1/p
</o g £1p> 93 1 x dY) = <Pfo Y g s lx dy) -

Proposition 2.1. Let1< p, g < oco. Then

(@) A7 (X) = AL(X)@P),
(b) AP4(X) = AYXP/DYD = f2(xP/D),
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Let X be anN-tuple of Banach function spaces ¢f, v). If X is regular, meaning
that A(X) is dense in eacly; for 1< j < N, then we can form the dual Banadhtuple
X'=(X]...., X)) andfor(a, f) € Int I1,1<q < ooand 1/¢+1/4" = 1, the following
duality formulae hold (sef 2, Corollary 3.3 and Theorem 3.4])

X prgx) =X p gy A Xpgn) =Xy p 0k (4)

Subsequently, we writé< B if A <c¢B forsome constant> 0independent of quantities
AandB. If AXB andA =B, then we putA ~ B.

3. The K-functional for N-tuples of Lorentz classes

Throughout this sectioff = P; - - - Py will be a convex polygon in the plarié® with
verticesP; = (x;j,y;) andX = (X1,..., Xy) will be a BanachN-tuple of function
spaces oli€2, v). Our aim is to describe th&-functional for theN -tuple of Lorentz classes
AP9(X) = (AP (Xy), ..., AP9(Xy)). We shall need some preliminary results. First of
all, note that equalityi f[lx; = Il|flllx; and the lattice property ok; (j = 1,..., N)

imply that (> (X), K (z, s; -)) is a lattice.

Lemma 3.1. If f e Y (X), then

N N
K(t,s; f; X)=inf 33" 5955 | fillx; | FI< Y fis f520¢. ()
j=1 j=1
Proof. Given any functiongfa, ... fy with f; >0 and| f|< 312, f;, we have
N
Filf
1= =—
j=1 D=1 i
Whence,
N N
Y sl e Y s | 2 s ks .
j=1 j=1 D=1 /i X;

This proves the left-hand side inequality in (5). The converse inequality is clear.

Lemma 3.2. Let A € Q be a measurable sefthen

N N
Kt si7a) = inf 030 95 llx, s A= Aj.Aj N A =10
j=1 j=1

if j#k Aj measurabl% .
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Proof. Given anyc > 1, there is a decompositiop, = Z?’zl fi (fj 20) such that
Zj'v:1 sV fillx; ScK(t, 53 a3 X). Let

Aj={xe€Q: fi(x)=maxfi(x),..., fj—1(x), fi+1(x), ..., fn(x)}}

and define the sefs; by

Ir'y=4; and rjzAj\ U 4

1<k<j

Obviouslyy, = 2?;1 Yanr; @dyanr, = fixr, +-+ v, SN G =1....N).
Hence

N N
K, s: 145 X) < ) 1987 ganr, lx, SN Y159 8% fllx,
j=1 j=1
<eNK(@t, s 74 X). O

For 0 < r < oo, we denote byX") = (XY), ...,X,(\C)) the quasi-Banaclv-tuple
formed by the-convexificationsX Y) of the spaces of .

Lemma 3.3. Let f € > (X™). Then
K@, s 1 fI 0O ~K@,s; £; X7).

Proof. Given any c>1, find a decomposition f| = Zyzl fi(f; =0) such that

Z;\Ll s fill yo ScK (8,55 f5 X®). Since|f|" = (Z?’zl fi)'< Z;V:l /7, using
J

Lemma3.1we get

N N
< . . . . 1
cK(t,s: £; X)) > Z tYigVi ”fj”x([) = Z([rx,sry/ L7 1) /r
j=1 S =

= K@ ST XM
On the other hand, if we start witlf|” and decompose it in the forfif|” = Z?’zl fi (fj
>0) with S0, 5™ || fllx; <cK (" s™: | fI"; X) then, lettingg; = f,l/’.
1fl= ()1 ¢ "< 201, 2. Whence, using again Lemngal, we derive

we have

N N
K@ s 1f15X) = Y s fillxy = Y (s gl yo)”
j=1 j=1 !
= K@ts; X0y O

Now, we are ready to prove the main result of this section.
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Theorem 3.1. The following statements hold:
() LetAY(X) = (A (X1),..., AL (Xy)). Then

(0.¢]
K(t,s: f: AHX)) ~ /0 K, 85 71115y X) dy.

(i) LetA”9(X) = (AP9(Xy),..., AP9(Xy)) (1 < p,q < 00). Then
_ 00 _ 1/q
K(t,s; f; AP1(X)) =~ (/ YITEK (P55 0y s yy: X)UP dy) .
0

Proof. (i) Let f andg be two nonnegative measurable disjointly supported functions. We
claim that

K(t,s; f+ g AAXN)<K(@,s; f; AAX) + K¢, 55 g5 AHX)).

Indeed, take any decompositiofis= Z 1 [, = Z/ _1 &j With f; andg; nonnegative.
Thenf; andg; are d|510|ntlysupported By(3|}f,+g,||A1(X o Sl H187 g2 -
Thus

N
K(t,si f+g ANX)< Y 9™ (5 gy + 1851azx,)
j=1

which implies the claim.
Take anyf € Y- A(X). Since| f1< Y ez 272 - 5y < 2041y, We have that

K(t,s: f; ANX0)) <0 2K (1, 51 100 2y p < iy ANX))
keZ

< Z 2K (@, s; X1 f1>2k)5 AY(X))
keZ

oo
§4/0 K(Z‘,S;X{‘f|>y}§/11(x))d)’-

Onthe otherhand, LemanandthefactthatXA||A1(Xj) = llxallx; implythatk (z, s; x4;
AY (X)) ~ K(t,s; 14 X). Whence,

oo
K(,s; .f;Al(X))<A K (1,83 xq 1513 X) dy.

Conversely, given any decompositiofi| = Z;v=l fi (f;=0), sinceyy - ny) < Z?]:l
X{f,->v}, we have by Lemm&.1

Z 5 g, —/ Z Iy,

Z I /O K (1,55 11 £15 13 X) dy.
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Consequently,
1% > v
K(t,s; 1 A7(X)) ~ /0 K, 85 74115y X) dy.
(i) According to Propositior2.1, 474 (X ;) = Al(Xj”/q))(‘f). Hence, using Lemma.3

and (i), we have that

(q)

Kt s: f: AP1(X) = K151 f1 AHXPIO)YT) = K@, 593 | f|7: ALK PIO)) T

00 _ 1/q
(/(; K@, s, i1 fli>y): X(p/q))dy>

o g—1 q q. . v(p/9) Y
(/O YRR ST 1y 159y X )dy>

00 1 _ 1/q
(/O YITRK (P85 gy 1 yy: X)UP d)’> : O

[

[

[

Corollary 3.1. Let(a, p) € Int I1. Then

(i) A p1x = AT Xp.1:6)-
(ll) Ap’q(X)(a)ﬁ)qq;K = Ap’q(X(a)ﬂ)’q/p;K) forl < pP,q < X.

Proof. We only give the proof of (ii) because the proof of (i) is similar. By Theoi&i
and Fubini’s theorem, we obtain

q
I fIIAp,q(X)wvﬁ)_q;K

o e[ _ o dt ds
2/0 g 1/0 /o (TR P S g g1y K)OP = = dy

t s
= / yqﬂ/ / @ PR s g ey XNYP = —dy
0 o Jo z u

/oo -1 q/p d q O]
_ q 4 = _ .
o ||X”f|>y}”Xu.ﬁ»q/p;x Y ”f”/l”"“X(a,/f),q/p:K)

4. Interpolation of N-tuples of weightedL?-spaces

We assume again the®, v) is ac-finite measure space, thAt= P; - -- Py is a convex
polygon inR? with verticesP; = (x;, y;) and(a, B) € Int I1.

Definition 4.1. Given any weight functions, ..., wy onQ we put

Wy g(x) = inf max {5 %sYi Py . x)) |,
%) 1>0,5>0 [1<j<1v{ ey

Wy, p(X) = Sup [ min {tx-f‘“sy-/"ﬁwj(x)}]

t>0,5>0 LIS/ <N
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Let P, s be the set of all triplegi, j, k} such that(x, ) belongs to the triangle with
verticesP;, P;, Pr. Then, by Cobos et al[13], Lemma 2.2,

Wy, g(x) = max{w;’ (x)w J(X)wkk(x) i, J, k} € Py p}
and
Wy g(x) = min{w x)w ’(x)wk" (x) :{i, j, k} € Py},

where(c;, cj, cx) stands for the barycentric coordinategaff) with respecttaP;, P;, Px.
If 1<p < oo andw is a weight function orn2, we denote byL”(w) the weighted
L7-spaceformed by allv-measurable functiorfssuch that

1/p
Il fllzr ) = </Q If(X)I”w(x)dv(X)> < 0.

If p = oo, in order to give a role to the weight, we defineL.*°(w) as the collection of all
v-measurable functiorfshaving a finite norm

I f ooy = Il fwllpoe.
It was shown iff13], Theorem 2.3, that

(L W1, s LP(WN)) (0, f).00:k = L™ (g ) (6)
Next we establish interpolation formulae fy-tuplesL? (w) = (LP(w1), ..., L?(wy))

for any p < oo. We start by computing th& -functional. For this aim, according to
Example2.1and Theoren8.1, it suffices to calculat& (¢, s; y4; L1(w)). This is done in
the following lemma.

Lemma 4.1. Let A C Q2 be a measurable seten

K(t,s; 14 LY (w)) >~ / min {rsY w;(x)} dv(x).
A 1<j<N

Proof. Firstwe check, proceeding ag26], that without loss of generality we may assume
that the weightsv; are discrete valued. Indeed, given any 0, definew; by

W) =Q+e)" if A+ t<w0)< A+e)", mel,

then, for all f € L*(w;), we havel £ 1w, <1 f 21w < A+ L1w,))-
Now we can split the sek in pairwise dlSJomt measurable S8 )7 such that each
weightw; takes a constant valug} in eachE;. So A= J,c7 Es, andyy = > ;7 Xg,-

Ifminy<j<n{t'isV @’ } = t"fOsyfow , for eachy € E; setfj,(x) = 1andf;(x) =0if
Jj # jo. Theny, = Z, 11 and

K(t,s: 74 LYw)) < fo’S”IIfJIILuw]) > / min {r*is”i@" ) dv

1<j<N
seZ

_ / min {7 s% 0 (x)} dv(x).
A

1I<j<N
The converse inequality is clear]
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Theorem 4.1. Let LP(w) = (L (w1), ..., L (wy)) and1< p < oo. For (o, f) € Int I1
set

_ [ xj=o yi—Po . el
n“’ﬂ(X)_/o /o min {77 Pw;(x)} Pl

1<j<N
Then

(l) Lp(w)(oc,ﬁ),p;K = Lp(ﬂ:%/;).
(ii) If (o, B) does not lie on any diagonal @1, thenL? (m, g) = LP (i, p).

Proof. (i) SinceL”(w;) = A”(L*(w)), Corollary3.1yields that

Lp(w)(oc,[)’),p;l( = Ap(Ll(w)(oc,ﬁ),l;K)-

By Lemmad4.1and Fubini’s theorem, we get

%41 7153 “Wu BLLK

/ / / min {tY %™ wj(x)}ﬂ d—sdv(x)
(1£1>) A rs

/ Tty p(x) dv(x).
{1.f1>y}

Therefore

o
r ~ p—1 _
I fo P e i, 4

o0

1
= p-1 7y p(x) dv(x ) dy = — b .
A y (w/{lf|>y} aﬂ( ) dv(x) y P ”f”LP(nm’ﬁ)

(i) For any 4, u > 0, we have

( )_/OO /oo min t Xj—o Ky Yj_ﬁ)xjia vi— ( ) dl dS
M= Jo 1<ien |\ T e g T s
S s\ ar ds
Xj—0 Wi
> 1<rleI£1N{) j j wj(x)}'/ / ( ) < ) T

The last integral is finite by Cobos and Pedir®, p. 374]. Therefore, we derive

Wy, p(x) = sup[ min {”‘f‘“u"-"ﬁw,-(x)}} <y, ().

/l,y>0 <j<
Similarly, one can check that, z<, g. S0
LP (s p) = LP(W)(5,p), p:x = L (5, p) = LP (Wyp). (7)

Note that no assumption dn, f5) has been used to established (7).
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Now, if («, f) does not lie on any diagonal df, then for any{i, j, k} € P, s the
point («, ) is an interior point of the triangléP;, P;, Pi} and so the interpolation space
(LP(w;), LP(w;), LP (W) (o, p), p: x IS Well defined. According to Lemmalwe get

> WP, L)), L Wi) ), pik < LPW) oy, pi -
{i,j.k}YePy

But for triples of weighted.”-spaces we know that (s§&6, Theorem 8.1])
(LP (), LP(w;), LP (i) @ py. pix = LP (wi'w wib),

where(c;, cj, ¢;) denote the barycentric coordinates(ef ) with respect toP;, P;, Px.
Consequently,

Y LP@fwiu) = L Ghyp) = LPW)e,p,pik = L7 ().
{i.j.k}ePy

This completes the proof.[]

Remark 4.1. If («, p) lies on some diagonal dfl, then statement (ii) in Theorethlis
not true in general. For example, [Htbe the unit squargO, 0), (1,0), (0, 1), (1,1)}, let
o= f =3, andforn € N put

1 1
wi(n) = wa(n) = —, w2(n) =w3z(n) = .

Jn
According to Cobos et aJ13], Example 2.8,

" /oo /oo (Y212 /20172 ~1720/2 472002 gp ds
T n) = min s ) ) -
/2172 o Jo N n n N tos

log n
ma

Hence

lo
(P (w1), €7 (w2), L7 (w3), £¥ (wa))1/2.1/2). p:x = L7 ( p ”) :

n
. () = min 1 1 /11 1
w n) = N - = —.

1/21/2 Jnn N nn n

Remark 4.2. Corollary 3.1 and Lemma4.1 allow to describe other interpolation spaces.
For example, for aV -tuple of weighted.”-7-spaceg1 < p, g < o0) one can show that

But
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LP4(w),,p),q:x COINCIdes with the space

00 00 00 1 p q/p
f: / / / v~ (/ min {7 %Y " Pw; (x)}dv(x)) dy
o Jo Jo {If|>y}) ISTSN !
dr ds>1/‘f }
X— — <07
t s
Next we turn our attention td-interpolation formulae. The relevant weight is nawy g.

It was established ifil3, Theorem 2.5], that

(LYwa). ..., LX) @ p) 10 = L1(y ). 8)

The following result describes the spaces obtained from weightespaces forany > 1.
Theorem 4.2. Let LP(w) = (LP(w1), ..., LP(wn)), (o, p) € Int I, letl < p<oo and
1/p+1/p =1.Then

LP(W) 5, p),p;0 = L (04,p),

where

o oo ) t¥i—%gyi=B | dt ds i i
= min —_— — — |
7u.p) /0 /0 1<GEN [ wj)P/P | tos p=

and

i=253i=B) dr ds\ —
Oy p(x) = / / w, (x) T if p=o0.

Moreover,if (2, f) does not lie on any diagonal éf, then
Lp(w)(cx,ﬁ),p;] = Lp(li}oc,ﬁ)' (9)

Proof. Recall that for Kr < oo the dual spac&L’ (w))’ of (L"(w)) is L (w™""/").
Hence, using (4),

L)y pes = (L7 TPy LY ") oy i) -

According to Theorend.1/(i), we have(LP’(wl’p//p), o LP/(w;,p//p))(a,[;),p/;K =LV
(700, 8) with

o0 o0
Ty, p(X) Z/o /O min {#% %Y=k "’/'”( )} di ds

1<j<N
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Therefore,
LP (W) py.pis = (L (o)) = LP (05, p).
The proof of (9) is similar, but using now Theorehd/(ii). O
We end this section by characterizing thagéduples of weighted.”-spaces for which
the K - andJ-methods coincide.
Theorem 4.3. The following are equivalent

(i) For any (a, p)eIntll and for any 1<p<oo, we have LP(w)yp) py =
LP(W) (o, p), psk -

(i) There is(ag, fg) € Int II which does not lie on any diagonal &f and 1< po < oo
such thatLPO(w)(ao,/;O),po;J = LPO(W) (59, o). po K -

(i) There are weightss, vz, vz in Q such that for anyL < j <N we havew; ~ vi_xf_y’

U;./’ vg./'
Proof. Obviously(i) = (ii). To show thatii) = (iii) choose three vertice’,, P;, and
Py, in Q such that(x, fiy) belongs to interior of the trianglgP;,, Pj,, Pi,}. Since two
polygons related by an affine isomorphism generate the same interpolation spddd (see
Remark 4.1]) we can assume without loss of generality fyat= (0, 0), P;, = (1,0),
Pry = (0, 1). Putvy = wjy, v2 = wj, andvz = wy,.
According to Theorem4.1,4.2, and (6) and (8), we have

Lpo(ﬁ)ao,ﬁo) = LPO(W) (45, o), po; s = LPO(W) (50, 8), po: K = LPO(J)O(O’[;O).
Whence, for any tripléi, j, k} € Py, g, SINCEWy, gy <wi'w' wik iy, g, We get
A i ¢ .
L (W4 p,) = LPo(w? wj’w,‘ck) = LP0(iyy g,)-
This implies thatiy, g, ~ ;" w’/ wi* = iy, 4, and so
i Ciock ~ , 1—%0—p B
w; u)j’w,ik ~ vy 0000 (10)

Takeany =1, ..., Nwithr # io, jo, ko. Since(og, o) does not lie on any diagonal &f,
the point(ag, fy) should be in the interior of one of the following trianglg., Pj,, Pk},
{Pig» Pr, Pio}s { Piy, Pjo, Pr}. Letus assume, for example, thiag, fy) € Int {P;y, Pj,, P}
Since the barycentric coordinates(a, ffy) with respect taP;y, P;,, P, are
Boxr  Po Boxr ﬂo)

- _1 OCO - b - b

(1 B
Yr Yr Yro Yr

it follows from (10) thatw, =~ vi*x’*y’ vy’ vy . The casesug, fo) € {Pr, Pjy. Pio} and
(20, Bo) € {Piy, Pr, Py} are analogous.
1=xj—yj xj yj

To complete the proof we will show thatii) = (i). Sincew; ~ v; v,y v3
(1<j<N), forany(a, f) € Int I, we getid, g ~ iy p = vf“*ﬁv%vg. By (7) and (6),
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we have thal.? (w) gy, »;xk = LP (i, ) for any 1< p < oo. Whence, using (8), we obtain
forp=1,

LYw) 1.0 = LYWy p) = L1W) (. p) 1. k-
If1 < p< oo, working with the weights

—_p N —p 1—x;i—vy; ' /p . —p ).
ujzwjp/P_(vl”/”) X >](v21/1)x,(v3p/p)>,’

we derive that
(L WD), oo LY @)y prik = L (G 7).
Finally, duality formula (4) implies that

Lp(w)(oc,ﬂ),p;l = ((Lp,(ul), s Lp/ (MN))(oc,ﬂ),p’;K)/ = Lp(ﬁ)oc,ﬂ)
= LP(U))(M”[)')’[,;K. D

5. Interpolation of N-tuples of classical Lorentz spaces

In this last section we work with classical Lorentz spaces, so we §ake (0, co)
with the usual Lebesgue measure. Lef p < oo and let¢(x) > 0 be an increasing
concave function oR* = (0, co) such thatp(0+) = 0. The classical Lorentz spaebg

(see[24,23]) is defined as the collection of all those measurable functiofisasuch that

1 00 1/p
||f||AZ=(; fo f*(x)f’dqb(x)) < oo,

If Y is only a quasi-concave function wifh(0+) = 0 andg is its smallest concave majorant
(soy =~ ¢), we putdy, = Ay4. The case = 1 was already considered in Exam@l@. For
our purposes, it will be useful to look at the norm in the form (§edheorem 2.1])

o0 1 1/p
||f||AZ=</O VP~ ¢(uf<y)>dy> .

Then||f||’;,/, = Jo Y27 Hixq p1=wylla, dy, and sol = AP (Ag).

In what followsA‘(";5 denotes theV-tuple of classical Lorentz spaceAgl, cee, Aé’)N), If
p = 1, we simply write/ 4.

Lemma 5.1. Let A C (0, c0) be a measurable set with Lebesgue meagdifgthen

K(t, 510 Ag) = (i (s ¢ AD).

X/ x
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Proof. Let|A| = r, since(y4)* = 1. andZ(A_¢) is invariant under rearrangement,
K(t.s: 7a: Ag) = K (1. 55 10,0y Ag)-

Givenany > 1,lety g, = Y1y fjwith f; >0andy 1.y 157s% | fjlla, <cK(t.s: f:
. ’ J
Ag). Then

t t N * N ¢
/ 2, x) dx 2/ dYofi| @dx<) / fi@dx (> 0).
° V= iz o

According to Bennett and Sharpl€$], Theorem 111.2.10 and Remark 111.7.6, there is an
operatorT : Ay — Ay, such thau|T||£(A¢j_)A¢j) <landyg, = Z?I:l TfF with Tf}

decreasing. Thatmeans thatthere ate9< 1 suchthad-}_; ¢; = 1andTff = ¢; -
Whence
N N N

DSV )= rISYITS] g, < D sV Ly,

j=1 Jj=1 j=1
N
=D ISV filla,, SeK (51 20, Ag)-
j=1

Thus

N N
K(t,s; X(O,r);A_qb) ~ inf Z t"f'syf'cjd)j(r) :0<c; <1, Z cj=1
j=1 j=1

This implies that

K(t.si7pi dg) = min (9577;(1AD). O

Once we have th& -functional for/l_¢ we can proceed as in Theorem 4.1 to determine

the K -spaces generated b?(;) . The functionsr, g, (3)%/3’ &a’ﬁ are defined as in Section 4.

Note that properties of functions; yield thatr, g is also an increasing concave function
with 7, 3(0+) = 0.

Theorem 5.1. Let/l_‘;’5 = (Apl, e A;’)N), 1< p < oo and let(x, B) € Int I1. Then

() D wp.pix = A,y

(i) If (2, p) does not lie on any diagonal éf, then(A_g))(a,/;),p;K = /13’). K

Proof. (i) Using thatAgl = AP(Ay), it follows by Corollary3.1that
J

D)y pike = AP (Ag) . 1:50)-
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By Lemma5.1

~ * * Xj—0l yj— ﬁ dt d?
5 Ay = J L in (s (YD} — —

Therefore

[e ¢
p—1y. .
” f”/lp((/ld,)( 21 K) /;) y ||/{{|f‘>y ”(/Lﬁ)(a P.LK dy

- /0 " 1/ / 1<n;"21v xl_asyj_ﬁﬁbj(ﬂf()’))}

o0
= /0 ¥ g D dy = 1 £17 ﬁ

(i) If (o, p) does not lie on any diagonal éf, then we know from Theorem.1/(ii) that
Ty p = ¢4 g, Which completes the proof.[]

Next we turn our attention to the J-method. We start with the gasel.

Theorem 5.2. Let A, = (Ag,. ... Ag,)and(x, f) € Int I1.Then(Ay) o, p).1.7 = A(} ,

Proof. For{i, j, k} € Py p, we put Lj; j ) = (Ag,. A¢ Ap)@.p.1;0 1 (o p) belongs to
the interior of the triangle with vertice®;, P;, Py, and we put

(Ag, Ag g ;1 i (0. )= (1 =0 )P +0; ; P;.
Liijiy =1 g, Ap o1 1 (@ B) = (1= 0i 1) Pi + 0; i Py,
(Ag;» Ap 0,1 T (o f) = Q=00 Pj + 0k P

if (o, p) belongs to any edge of the triangle. By Lemn2akand?2.2

Apaprs= [ Lijk-
{i>jvk}€7)a,/3

According to Asekritova and Krugljgi ], Theorem 1K - andJ-methods coincide for triples
of Banach function spaces. Hence, using Theoselnwe get ., A¢j, Ap)p).10 =
A o <1>3f g where(c;, ¢, ¢) are the barycentric coordinates(©f ) with respect taP;,
Pj, P;. On the other hand, by Cerda et gB], Theorem 10;(/1(,,1,,/1(,5/,)9,1 = A¢,-1_6<1>§'
Whence, using that,, N A¢j = Ama)wl_,qgj), we conclude that

Apaprs= [ Liij =45 -
{i.j.k)€Py g ’

To establish the converse inclusion, note that the sp&g?are rearrangement invariant
and (44) (. p).1:s IS an exact interpolation space with respect to Ahuple 4. Hence,
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by Bennett and Sharpld®], Theorem 111.2.12, we obtain that/l_gb)(a,/;),w is rearrange-
ment invariant. Lety be its fundamental function. By Cobos and Fernandez-Marfit{#z
Theorem 1.3

lp(r) = ||X(0,r)||(/1¢)(a,[}),l;]

< max “ Nzonl % A<y p(r).
S {i,j,k}er,/;{”X(o’r) ”A¢i ”/C(O,r) ”/14)]_ ”X(O,r) ”/14’1( }< ¢o(,[)’( )

This implies that/l(z)%ﬂ < Ay = (Ag) (s p),1,s and completes the proof.C]

We finish the paper by studying the case<1lp < oo. First note that for any Banach
N-tuple A = (Aj,...,Ay) and any O< 4 # 1 the spacel, g 4. is formed by all
elements: € Y (A) which can be represented @as= Z(m,n)EZZ U With u,, , € A(A)

and(Z(m n)ezz(/l‘“’"‘ﬁ"J(ﬂf", A um,n))q)l/q < 00. Moreover| - |4 p) 4,/ IS €quivalent
to
1/q
”a”(m;(’[g),q;J = inf Z (/l—ocm—ﬁnj(;hm’ At n))? a= Z Um,n
(m,n)EZ2 (m,n)EZ2

We shall need the following auxiliary result.

Lemma5.2. Let X = (X1,..., Xy) be a BanachV-tuple of r.i. spaces o0, co) and,
forl<r <oo,letX® = (x{”,..., X\)) be then-tuple formed by the convexifications.
Then

()_((zx,/f),l;l)(r) = ()_((r))(a,/i),r;J-

P_r(;]of. Given anyf € (X(,,p.1,,)"” we can find a representatiofi|” = -, , .72 tmn
wit
1/r
S 2@ 2w ) | <l

Xp.1:d
(m,n)eZ?

_ m _n _ . .
SinceJ (2", 2" up i X) = J (27,27 5 lumn Y73 X)), we can write the above inequal-
ity as
1/r
_om fn o omo n 1r. 50)wr
Yo @ T I@ 2 XN el fll iz, 00
(m,n)eZ2
Putting = 2%/ andv,, , = |um..|*", we get
1/r

—om—pn ; .
> G JO" A Vs X)) <ellfllig g pa o

(m,n)eZ2
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This implies thatg = 3, /.72 vmn belongs to(X ") (5, ). s With gl zey, s <
callflz, 1.0 Since

1/r

I fl = Z Um,n < Z |Mm,n|1/r = Z Unn = 8§

(m,n)eZ2 (m,n)eZ2 (m,n)eZz

and(X ™), ) ./ is rearrangement invariant (the same argument ad¥ow) ,, 4 1., ap-
plies), we conclude that belong ta X "), ) . ; with L 1% s SCUF (R0 520
(]

Now we are ready for the description #fspaces when & p < co.

Theorem 5.3. LetA_g = (Apl, ...,AgN), let1 < p < oo and let(«, f) € Int IT such
that (o, ) does not lie on any diagonal éf, then

AP 4P
A s =45

Proof. Since/l{;v = (/1¢j)(") (j = 1,..., N), by the previous lemma and Theorén?
J
we get that

A5 =y )P = (Aap1in® > ADap .y

To establish the converse embedding we can proceed as in the first part of THe@rem

because, by the assumption @n f), for any{i, j, k} € P, g the point(«, ) belongs to
the interior of the triangle with vertice®;, P;, P,. [
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