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Abstract

We describe the spaces obtained by applying the interpolation methods associated to polygons to
N -tuples of weightedLp-spaces,N -tuples of classical Lorentz spaces and some otherN -tuples of
function spaces.
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1. Introduction

Interpolation of BanachN -tuples is a question that has beenof interest from thebeginning
of abstract interpolation theory. It was considered for the first time in 1961 by Foiaş and
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Lions[21]. Since then, several authors have investigatedextensionsof themain interpolation
methods toN -tuples. Concerning the extension of the real method, we refer, for example,
to the papers ofYoshikawa[28], Sparr[26], Fernandez[19,20]and the paper by Peetre and
one of the present authors[15]. The case of the complex method was considered by Favini
[18]. More information on these multidimensional methods can be found in the article by
Cwikel and Janson[16] and in the monograph by Brudnyı̌ and Krugljak[5].
The step from two to several spaces involves considerable difficulties, to the effect that

basic results in the classical theory for couples are no longer true in general forN -tuples.
For example, the equivalence betweenJ - andK-constructions fails. Duality is another dif-
ficult point, because duals of these spaces may fail to be intermediate spaces with respect
to the dualN -tuple. However, interpolation methods forN -tuples still have important ap-
plications in analysis. For instance, they are useful in the investigation of function spaces
with dominating mixed derivatives (see[26,5]). They have a role in the development of the
classical theory for couples, as it was shown byAsekritova and Krugljak[1]. Working with
function spaces, the multidimensional approach is sometimes even more useful than the
usual approach by means of couples, as it is pointed out in the article of Asekritova et al.
[2].
In this paper, we deal withJandK interpolationmethods introduced by Cobos and Peetre

[15], which are similar to the real method but incorporating some geometrical elements.
They are defined by means of a convex polygon� = P1 · · ·PN , an interior point(�,�) of
� and a scalar parameterq ∈ [1,∞]. The Banach spaces of theN -tuple should be thought
of as sitting on the verticesPj of �.
The motivation of Cobos and Peetre for introducing these methods was to follow a new

geometrical approach which, on one hand, closes the gap between the ideas of real and
complex interpolation, and on the other hand, it gives a unified point of view for other
multidimensional methods. Indeed, if� is equal to the simplex, these methods give back
(the first nontrivial case of) spaces studied by Sparr[26], and if � is equal to the unit
square, we recover spaces considered by Fernandez[19,20]. The resulting theory forJ and
K methods defined by polygons highlights the geometrical aspects of the classical theory
of real interpolation for couples. See, for example, besides[15], the papers by Cobos et
al. [14], Cobos and Fernández-Martínez[9,10], Cobos et al.[13], Carro et al.[6], Ericsson
[17] and Cobos et al.[12].
Sometimes applying multidimensional methods to anN -tuple one gets spaces that can

be also obtained by using the real method repeatedly (see[26,25,13]). But this is not always
the case. For example, it was shown in[13], Theorem 2.3, that interpolating theN -tuple
of L∞-spaces with weights(L∞(w1), . . . , L

∞(wN)) by theK-method associated to the
polygon�, the point(�,�) andq = ∞, then the outcome isL∞(w̌�,�), the weighted
L∞-space defined by

w̌�,�(x) = min{wci
i (x)w

cj
j (x)w

ck
k (x) : {i, j, k} ∈ P�,�}.

Here,P�,� is the set of all those triples{i, j, k} such that(�,�) belongs to the triangle
with verticesPi, Pj , Pk and (ci, cj , ck) stands for the barycentric coordinates of(�,�)
with respect toPi, Pj , Pk. They also established a similar formula forN -tuples of weighted
L1-spaces when they are interpolated by theJ -method withq = 1. In this case the weight
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turns out to be

ŵ�,�(x) = max{wci
i (x)w

cj
j (x)w

ck
k (x) : {i, j, k} ∈ P�,�}.

These two formulae are genuine results forN -tuples, since they cannot be derived by using
the real method again and again.
The aim of this paper is to continue their research by characterizing the spaces that arise

by interpolatingN -tuples ofLp-spaces with weights by theK- andJ -methods and any
1�p = q�∞. As we shall show, in the special case where(�,�) does not lie on any
diagonal of�, the new formulae only involve the functionsw̌�,� andŵ�,�. They are a new
genuineN -tuple results. We also study the case ofN -tuples formed by classical Lorentz

spaces�p

� = (�p

�1
, . . . ,�p

�N
). Here,�j stands for the fundamental function of thej th

space(j = 1, . . . , N). If (�,�) does not belong to any diagonal of�, then the resulting
spaces are Lorentz spaces with fundamental functions�̌�,� and�̂�,�. These function are
defined in the same way thatw̌�,� and ŵ�,� but replacingwj by �j . If the point (�,�)
belongs to some diagonal of�, the outcome are weighted spaces (respectively, Lorentz
spaces), but with much more involved weights (respectively, fundamental functions).
The dichotomy between to lie or not to lie in any diagonal opens a new line for further

research: to clarify the role of the geometry of the polygon.
We also characterize thoseN -tuples of weightedLp-spaces for which theK- andJ -

spaces coincide. This result is particularly interesting since even on simpleN -tuples theJ -
andK-spaces might not be equal (see, for example,[11, Example 3.4]).
To establish these results, we start by computing theK-functional forN -tuples of Lorentz

classes associated to Banach function spacesXj (j = 1, . . . , N). The concept of Lorentz
class�p,q(X) has been introduced recently by Cerdá, Coll and one of the present authors
[8]. The main advantage of working with these classes is that in the arguments it suffices
to deal with characteristic functions. Then, as an application of these results, we determine
the spaces obtained by interpolation ofN -tuples of weightedLp-spaces, andN -tuples of
classical Lorentz spaces.
The paper is organized as follows. In Section 2, we recall the definitions ofJ - and

K-methods defined by means of polygons and some of their basic properties. We also
introduce in there the Lorentz classes. In Section 3, we compute theK-functional forN -
tuples of Lorentz classes, and we determine the spaces obtained by applying theK-method
to anN -tuple of�p,q -spaces. Section 4 contains theK- andJ -results for weightedLp-
tuples.We also study there the coincidence of theJ - andK-spaces onN -tuples of weighted
Lp-spaces, establishing the necessary and sufficient condition for the equality in terms of
the weights. Finally, in Section 5, we determine the spaces obtained from anN -tuple of
classical Lorentz spaces.

2. Preliminaries

Let � = P1 · · ·PN be a convex polygon in the planeR2. The vertices of� arePj =
(xj , yj ) (j = 1 · · ·N). Let Ā = (A1, . . . , AN) be aBanach N-tuple, that is, a family of
NBanach spaces all of them continuously embedded in a common linear Hausdorff space.
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We can imagine each spaceAj as sitting on the vertexPj . By means of the polygon� we
define the following family of norms on

∑
(Ā) = A1+ · · · + AN :

K(t, s; a)=K(t, s; a; Ā)

= inf




N∑
j=1

txj syj ‖aj‖Aj
: a =

N∑
j=1

aj , aj ∈ Aj


 , t, s > 0.

Similarly on�(Ā) = A1 ∩ · · · ∩ AN we can consider the family of norms

J (t, s; a) = J (t, s; a; Ā) = max
1� j �N

{txj syj ‖a‖Aj
}, t, s > 0.

Let now(�,�) be an interior point of� [(�,�) ∈ Int �] and let 1�q�∞. TheK-space
Ā(�,�),q;K is defined as the collection of alla ∈∑(Ā) for which the norm

‖a‖(�,�),q;K =
(∫ ∞

0

∫ ∞

0
(t−�s−�K(t, s; a))q dt

t

ds

s

)1/q
is finite.
TheJ -spaceĀ(�,�),q;J is formed by all those elementsa ∈∑(Ā) for which there exists

a strongly measurable functionu = u(s, t) with values in�(Ā) such that

a =
∫ ∞

0

∫ ∞

0
u(t, s)

dt

t

ds

s
(1)

and (∫ ∞

0

∫ ∞

0
(t−�s−�J (t, s; u(t, s)))q dt

t

ds

s

)1/q
<∞. (2)

The norm onĀ(�,�),q;J is

‖a‖(�,�),q;J = inf

{(∫ ∞

0

∫ ∞

0
(t−�s−�J (t, s; u(t, s)))q dt

t

ds

s

)1/q}
,

where the infimum is taken over all representationu satisfying (1) and (2).
The real interpolation space(A0, A1)�,q (see[4,27]) can be seen as the “limit case”

when the polygon degenerates into the segment[0, 1]. Recall that given any Banach couple
(A0, A1) the space(A0, A1)�,q (0< � < 1,1�q�∞) is

(A0, A1)�,q =
{
a ∈ A0 + A1 : ‖a‖�,q =

(∫ ∞

0
(t−�K(t, a))q

dt

t

)1/q

<∞
}
,

whereK(t, a) = inf {‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, aj ∈ Aj }. The space(A0, A1)�,q
can be also described in terms of theJ -functionalJ (t, a) = max{‖a‖A0, t‖a‖A1}. It turns
out that

(A0, A1)�,q =
{
a =

∫ ∞

0
u(t)

dt

t
:
(∫ ∞

0
(t−�J (t, u(t)))q

dt

t

)1/q

<∞
}
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and‖ · ‖�,q is equivalent to

‖a‖�,q;J = inf

{(∫ ∞

0
(t−�J (t, u(t)))q

dt

t

)1/q

: a =
∫ ∞

0
u(t)

dt

t

}
.

In contrast with the case of couples,K- andJ -methods forN -tuples(N�3) do not
coincide in general.Weonly have thatĀ(�,�),q;J ↪→ Ā(�,�),q;K,where↪→means continuous
inclusion.
If �̃ = Pj1 · · ·PjM is another convex polygon whoseM vertices all belong to�, we

can form theM-subtupleÃ = (Aj1, . . . , AjM ) by selecting fromĀ those spaces sitting on
verticesof�̃.WedesignatebỹK(t, s; ·; Ã)andJ̃ (t, s; ·; Ã) theK- andJ -functional defined
by means of�̃ over

∑
(Ã) and�(Ã), respectively. For(�,�) ∈ Int �̃ and 1�q�∞, we

denote byÃ(�,�),q;K andÃ(�,�),q;J the interpolation spaces defined by�̃ overÃ. The next
result follows easily from inequalities

K(t, s; a; Ā)�K̃(t, s; a; Ã) if a ∈
∑

(Ã),

J̃ (t, s; a; Ã)�J (t, s; a; Ā) if a ∈ �(Ā).

Lemma 2.1. Let (�,�) ∈ Int � and1�q�∞. Then the following continuous inclusions
hold

Ā(�,�),q;J ↪→
⋂
�̃

Ã(�,�),q;J ↪→
∑
�̃

Ã(�,�),q;K ↪→ Ā(�,�),q;K

where the intersection and the sum are taken over all convex polygons�̃ ⊆ �with (�,�) ∈
Int �̃.

If q = 1 or q = ∞, we have the following result (see[11, Theorem 1.5]).

Lemma 2.2. If (�,�) lies on some diagonal of�, then

Ā(�,�),1;J ↪→
⋂

{i,k}∈D
(Ai, Ak)�i,k ,1 ↪→

∑
{i,k}∈D

(Ai, Ak)�i,k ,∞ ↪→ Ā(�,�),∞;K.

Here,D denotes the set of all couples{i, k} such that(�,�) belongs to the diagonal joining
Pi andPk, and for {i, k} ∈ D, �i,k is the unique number0 < �i,k < 1 such that(�,�) =
(1− �i,k)Pi + �i,kPk.

Sometimes, we shall need to work withN -tuples formed by quasi-Banach spaces. In
this case,K(t, s; ·) andJ (t, s; ·) are only quasi-norms, and̄A(�,�),q;K andĀ(�,�),q;J are
quasi-Banach spaces. The domain of definition ofq can be extended, namely 0< q�∞.

Let (�, v) be a�-finite measure space. We denote byL0 = L0(v) the space of all
(equivalence classes of)v-measurable functions on� which are finite almost everywhere.
If f ∈ L0, its distribution functionis defined by	f (t) = v({x : |f (x)| > t}), and its
decreasing rearrangementby f ∗(s) = inf {t : 	f (t)�s}.
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Subsequently, we shall work with Banach spacesXof (equivalent classes of ) measurable
functions on� with the following properties:

(i) Wheneverg ∈ L0,f ∈ X and|g|� |f | theng ∈ X and‖g‖X�‖f ‖X (lattice property).
(ii) If 0 �fn(
) ↑ f (
) a.e. then‖fn‖X ↑ ‖f ‖X (Fatou property).

We put‖f ‖X = ∞ if f �∈ X.
If the norm of a Banach space E of measurable functions on� is equivalent to a norm

satisfying (i) and (ii), then we say thatE is aBanach function spaces. We shall also deal
with quasi-Banach function spaceswhich are defined analogously but with‖ · ‖X being
only a quasi-norm.
Examples of Banach function spaces areLp spaces for 1�p�∞ andLp,q spaces for

1< p <∞ and 1�q�∞. Recall that

Lp,q =
{
f : ‖f ‖p,q =

(
1

p

∫ ∞

0
(t1/pf ∗(t))q dt

t

)1/q

<∞
}
.

If 0 < p <∞ and 0< q�∞ then spacesLp,q are quasi-Banach spaces.
Lorentz classes�p,q(X) (for 1�p, q < ∞) associated to a Banach function spaceX

will be of special interest for us. They are defined (see[8]) by the condition

‖f ‖�p,q (X) =
(∫ ∞

0
yq−1‖�{|f |>y}‖q/pX dy

)1/q

<∞.

The functional‖ · ‖�p,q (X) is not a norm in general, but only a quasi-norm. Properties ofX
yield that�p,q(X) is a quasi–Banach function space. But ifp > 1 then�p,q(X) does is a
Banach function space because it can be obtained by real interpolation betweenX andL∞.
Namely (see[8, Theorem 6])

(X,L∞)�,q = �p,q(X), � = (p − 1)/p.

In what follows we write�p(X) = �p,p(X). If p = 1, a simple computation shows
that ‖�A‖�1(X)

= ‖�A‖X. Hence�1(�1(X)) = �1(X). Moreover, by Cerdá et al.[8],

�1(X) ↪→ X. In general�1(X) is not a normed space (see[8, Theorem 1]) but iff, g ∈ L0

are nonnegative and disjointly supported functions, then�{f+g>y} = �{f>y} + �{g>y} and
so triangle inequality holds for these vectors

‖f + g‖�1(X)
�‖f ‖�1(X)

+ ‖g‖�1(X)
. (3)

Next, we give an example where Lorentz classes can be calculated easily. By aweight
functionw(x) we mean any positivev-measurable function on�.

Example 2.1. Let 1�p, q <∞ and letLp,q(w) be the weighted Lorentz space, which is
defined by using the measurew dv instead ofdv. Then

�p,q(L1(w)) = Lp,q(w).
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Indeed, we have

‖f ‖q�p,q (L1(w))
=
∫ ∞

0
yq−1‖�{|f |>y}‖q/pL1(w)

dy = 1

q
‖f ‖qLp,q (w).

A Banach function spaceX is said to berearrangement invariant(or r.i. in short) if
wheneverf ∈ X andg is equimeasurable withf, theng ∈ X and‖g‖X = ‖f ‖X. The
fundamental functionof the r.i. spaceX is defined by

�X(t) = ‖�D‖X, whereD ⊆ � with v(D) = t.

An important example of r.i. spaces are the Lorentz spaces. If� is an increasing concave
function on(0,∞) such that�(0+) = 0, then the Lorentz space�� consists of all
functionsf ∈ L0 which have a finite norm

‖f ‖�� =
∫ ∞

0
f ∗(s) d�(s)

(see[24,22,3]). The fundamental function of�� coincides with�. The space�� is the
smallest of all r.i. spaces with fundamental function�.When�(t) = t1/p, then�� = Lp,1.
The next example describes the relationship between Lorentz spaces and Lorentz classes.

Example 2.2.We have

�� = �1(��).

Indeed, by Krein et al.[22], p. 111,‖f ‖�� =
∫∞
0 �(	f (s)) ds.Whence, equality follows

by using that�(	f (s)) = ‖�{|f |>s}‖�� .

In a more general way, for any r.i. spaceX, still holds that�X(	f (s)) = ‖�{|f |>s}‖X.
Consequently, if�X(0+) = 0, then‖f ‖�1(X)

= ∫∞0 �X(	f (s)) ds = ‖f ‖��X
. That is,

�1(X) = ��X
.

For 0< r <∞, ther-convexificationX(r) of the Banach function spaceX is defined by

X(r) = {f ∈ L0 : ‖f ‖X(r) = ‖|f |r‖1/rX <∞}.
The space(X(r), ‖ · ‖X(r) ) is a Banach function space ifr�1 (see[23]). The next result
shows that any�p,q -class can be realized as a�q -class over the(p/q)-convexification. It
is a consequence of equality(∫ ∞

0
‖�{|f |p>y}‖X dy

)1/p

=
(
p

∫ ∞

0
yp−1‖�{|f |>y}‖X dy

)1/p

.

Proposition 2.1. Let1�p, q <∞. Then

(a) �p(X) = �1(X)(p).
(b) �p,q(X) = �1(X(p/q))(q) = �q(X(p/q)).
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Let X̄ be anN -tuple of Banach function spaces on(�, v). If X̄ is regular, meaning
that�(X̄) is dense in eachXj for 1�j�N , then we can form the dual BanachN -tuple
X̄′ = (X′1, . . . , X′N) and for(�,�) ∈ Int �, 1�q <∞ and 1/q+1/q′ = 1, the following
duality formulae hold (see[12, Corollary 3.3 and Theorem 3.4])

(X̄(�,�),q;K)′ = X̄′
(�,�),q ′;J and (X̄(�,�),q;J )′ = X̄′

(�,�),q ′;K. (4)

Subsequently,wewriteA�B if A�cB for someconstantc > 0 independent of quantities
A andB. If A�B andA�B, then we putA � B.

3. TheK-functional for N -tuples of Lorentz classes

Throughout this section� = P1 · · ·PN will be a convex polygon in the planeR2 with
verticesPj = (xj , yj ) and X̄ = (X1, . . . , XN) will be a BanachN -tuple of function
spaces on(�, v). Our aim is to describe theK-functional for theN -tuple of Lorentz classes
�p,q(X̄) = (�p,q(X1), . . . ,�p,q(XN)). We shall need some preliminary results. First of
all, note that equality‖f ‖Xj

= ‖|f |‖Xj
and the lattice property ofXj (j = 1, . . . , N)

imply that
(∑

(X̄),K(t, s; ·)) is a lattice.

Lemma 3.1. If f ∈∑(X̄), then

K(t, s; f ; X̄) = inf




N∑
j=1

txj syj ‖fj‖Xj
: |f |�

N∑
j=1

fj ; fj �0


 . (5)

Proof. Given any functionsf1, . . . , fN with fj �0 and|f |�∑N
j=1 fj , we have

|f | =
N∑
j=1

fj |f |∑N
k=1 fj

.

Whence,

N∑
j=1

txj syj ‖fj‖Xj
�

N∑
j=1

txj syj

∥∥∥∥∥ fj |f |∑N
k=1 fj

∥∥∥∥∥
Xj

�K(t, s; f ; X̄).

This proves the left-hand side inequality in (5). The converse inequality is clear.�

Lemma 3.2. LetA ⊆ � be a measurable set.Then

K(t, s; �A) � inf




N∑
j=1

txj syj ‖�Aj
‖Xj

: A =
N⋃
j=1

Aj ,Aj ∩ Ak = ∅

if j �= k, Aj measurable

}
.
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Proof. Given anyc > 1, there is a decomposition�A = ∑N
j=1 fj (fj �0) such that∑N

j=1 txj syj ‖fj‖Xj
�cK(t, s; �A; X̄). Let

�j = {x ∈ � : fj (x)� max{f1(x), . . . , fj−1(x), fj+1(x), . . . , fN(x)}}

and define the sets�j by

�1 = �1 and �j = �j

∖ ⋃
1�k<j

�k.

Obviously�A =
∑N

j=1 �A∩�j
and�A∩�j

= f1��j
+ · · ·+ fN��j

�Nfj (j = 1, . . . , N).

Hence

K(t, s; �A; X̄) �
N∑
j=1

txj syj ‖�A∩�j
‖Xj

�N

N∑
j=1

txj syj ‖fj‖Xj

� cNK(t, s; �A; X̄). �

For 0 < r < ∞, we denote byX̄(r) = (X
(r)
1 , . . . , X

(r)
N ) the quasi-BanachN -tuple

formed by ther-convexificationsX(r)
j of the spaces of̄X.

Lemma 3.3. Let f ∈∑(X̄(r)). Then

K(tr , sr ; |f |r ; X̄)1/r � K(t, s; f ; X̄(r)).

Proof. Given any c >1, find a decomposition|f | = ∑N
j=1 fj (fj �0) such that∑N

j=1 txj syj ‖fj‖X(r)
j

�cK(t, s; f ; X̄(r)). Since |f |r = (∑N
j=1 fj

)r�∑N
j=1 f r

j , using

Lemma3.1we get

cK(t, s; f ; X̄(r)) �
N∑
j=1

txj syj ‖fj‖X(r)
j

=
N∑
j=1

(trxj sryj ‖f r
j ‖Xj

)1/r

� K(tr , sr ; |f |r ; X̄)1/r.
On the other hand, if we start with|f |r and decompose it in the form|f |r =∑N

j=1 fj (fj
�0) with

∑N
j=1 t rxj sryj ‖fj‖Xj

�cK(tr , sr ; |f |r ; X̄) then, lettinggj = f
1/r
j , we have

|f | = (
∑N

j=1 grj )1/r�
∑N

j=1 gj . Whence, using again Lemma3.1, we derive

cK(tr , sr ; |f |r ; X̄) �
N∑
j=1

t rxj sryj ‖fj‖Xj
=

N∑
j=1

(txj syj ‖gj‖X(r)
j

)r

� K(t, s; f ; X̄(r))r . �

Now, we are ready to prove the main result of this section.
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Theorem 3.1. The following statements hold:

(i) Let�1(X̄) = (�1(X1), . . . ,�1(XN)). Then

K(t, s; f ;�1(X̄)) �
∫ ∞

0
K(t, s; �{|f |>y}; X̄) dy.

(ii) Let�p,q(X̄) = (�p,q(X1), . . . ,�p,q(XN)) (1< p, q <∞). Then

K(t, s; f ;�p,q(X̄)) �
(∫ ∞

0
yq−1K(tp, sp; �{|f |>y}; X̄)q/p dy

)1/q

.

Proof. (i) Let f andg be two nonnegative measurable disjointly supported functions. We
claim that

K(t, s; f + g;�1(X̄))�K(t, s; f ;�1(X̄))+K(t, s; g;�1(X̄)).

Indeed, takeanydecompositionsf =∑N
j=1 fj ,g =

∑N
j=1 gj withfj andgj nonnegative.

Thenfj andgj aredisjointly supported.By (3),‖fj+gj‖�1(Xj )
�‖fj‖�1(Xj )

+‖gj‖�1(Xj )
.

Thus

K(t, s; f + g;�1(X̄))�
N∑
j=1

txj syj (‖fj‖�1(Xj )
+ ‖gj‖�1(Xj )

)

which implies the claim.
Take anyf ∈∑�1(X̄). Since|f |�∑k∈Z 2k+1�{2k<|f |�2k+1}, we have that

K(t, s; f ;�1(X̄)) �
∑
k∈Z

2k+1K(t, s; �{2k<|f |�2k+1};�1(X̄))

�
∑
k∈Z

2k+1K(t, s; �{|f |>2k};�1(X̄))

� 4
∫ ∞

0
K(t, s; �{|f |>y};�1(X̄)) dy.

On theotherhand, Lemma3.2and the fact that‖�A‖�1(Xj )
= ‖�A‖Xj

imply thatK(t, s; �A;
�1(X̄)) � K(t, s; �A; X̄).Whence,

K(t, s; f ;�1(X̄))�
∫ ∞

0
K(t, s; �{|f |>y}; X̄) dy.

Conversely, given any decomposition|f | = ∑N
j=1 fj (fj �0), since�{|f |>Ny}�

∑N
j=1

�{fj>y}, we have by Lemma3.1
N∑
j=1

txj syj ‖fj‖�1(Xj )
=
∫ ∞

0

N∑
j=1

txj syj ‖�{fj>y}‖Xj
dy

� 1

N

∫ ∞

0
K(t, s; �{|f |>y}; X̄) dy.
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Consequently,

K(t, s; f ;�1(X̄)) �
∫ ∞

0
K(t, s; �{|f |>y}; X̄) dy.

(ii) According to Proposition2.1,�p,q(Xj ) = �1(X
(p/q)
j )(q). Hence, using Lemma3.3

and (i), we have that

K(t, s; f ;�p,q(X̄)) � K(t, s; f ;�1(X̄(p/q))
(q)

) � K(tq, sq; |f |q;�1(X̄(p/q)))1/q

�
(∫ ∞

0
K(tq, sq; �{|f |q>y}; X̄(p/q)) dy

)1/q

�
(∫ ∞

0
yq−1K(tq, sq; �{|f |>y}; X̄(p/q)) dy

)1/q

�
(∫ ∞

0
yq−1K(tp, sp; �{|f |>y}; X̄)q/p dy

)1/q

. �

Corollary 3.1. Let (�,�) ∈ Int �. Then

(i) �1(X̄)(�,�),1;K = �1(X̄(�,�),1;K).
(ii) �p,q(X̄)(�,�),q;K = �p,q(X̄(�,�),q/p;K) for 1< p, q <∞.

Proof. We only give the proof of (ii) because the proof of (i) is similar. By Theorem3.1
and Fubini’s theorem, we obtain

‖f ‖q
�p,q (X̄)(�,�),q;K

�
∫ ∞

0
yq−1

∫ ∞

0

∫ ∞

0
t−�qs−�qK(tp, sp; �{|f |>y}; X̄)q/p

dt

t

ds

s
dy

�
∫ ∞

0
yq−1

∫ ∞

0

∫ ∞

0
(z−�u−�K(z, u; �{|f |>y}; X̄))q/p

dz

z

du

u
dy

=
∫ ∞

0
yq−1‖�{|f |>y}‖q/pX̄(�,�),q/p;K

dy = ‖f ‖q
�p,q (X̄(�,�),q/p;K)

. �

4. Interpolation of N -tuples of weightedLp-spaces

We assume again that(�, v) is a�-finite measure space, that� = P1 · · ·PN is a convex
polygon inR2 with verticesPj = (xj , yj ) and(�,�) ∈ Int �.

Definition 4.1. Given any weight functionsw1, . . . , wN on� we put

ŵ�,�(x)= inf
t>0,s>0

[
max

1� j �N
{txj−�syj−�wj(x)}

]
,

w̌�,�(x)= sup
t>0,s>0

[
min

1� j �N
{txj−�syj−�wj(x)}

]
.
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Let P�,� be the set of all triples{i, j, k} such that(�,�) belongs to the triangle with
verticesPi, Pj , Pk. Then, by Cobos et al.[13], Lemma 2.2,

ŵ�,�(x) = max{wci
i (x)w

cj
j (x)w

ck
k (x) : {i, j, k} ∈ P�,�}

and

w̌�,�(x) = min{wci
i (x)w

cj
j (x)w

ck
k (x) : {i, j, k} ∈ P�,�},

where(ci, cj , ck) stands for the barycentric coordinates of(�,�)with respect toPi, Pj , Pk.
If 1�p < ∞ andw is a weight function on�, we denote byLp(w) theweighted

Lp-spaceformed by allv-measurable functionsf such that

‖f ‖Lp(w) =
(∫

�
|f (x)|pw(x) dv(x)

)1/p
<∞.

If p = ∞, in order to give a role to the weightw, we defineL∞(w) as the collection of all
v-measurable functionsf having a finite norm

‖f ‖L∞(w) = ‖fw‖L∞ .
It was shown in[13], Theorem 2.3, that

(L∞(w1), . . . , L
∞(wN))(�,�),∞;K = L∞(w̌�,�). (6)

Next we establish interpolation formulae forN -tuplesLp(w) = (Lp(w1), . . . , L
p(wN))

for any p < ∞. We start by computing theK-functional. For this aim, according to
Example2.1and Theorem3.1, it suffices to calculateK(t, s; �A;L1(w)). This is done in
the following lemma.

Lemma 4.1. LetA ⊂ � be a measurable set,then

K(t, s; �A;L1(w)) �
∫
A

min
1� j �N

{txj syj wj (x)} dv(x).

Proof. First we check, proceeding as in[26], that without loss of generality wemay assume
that the weightswj are discrete valued. Indeed, given anyε > 0, definew̄j by

w̄j (x) = (1+ ε)m if (1+ ε)m−1 < wj(x)� (1+ ε)m, m ∈ Z,

then, for allf ∈ L1(wj ), we have‖f ‖L1(wj )
�‖f ‖L1(w̄j )

�(1+ ε)‖f ‖L1(wj )
.

Now we can split the setA in pairwise disjoint measurable sets{Es}s∈Z such that each
weightwj takes a constant values

j in eachEs . So A= ⋃s∈Z Es, and�A =
∑

s∈Z �Es
.

If min1� j �N {txj syjs
j } = txj0 syj0s

j0
, for eachx ∈ Es setfj0(x) = 1 andfj (x) = 0 if

j �= j0. Then�A =
∑N

j=1 fj and

K(t, s; �A;L1(w)) �
N∑
j=1

txj syj ‖fj‖L1(wj )
=
∑
s∈Z

∫
Es

min
1� j �N

{txj syjs
j } dv

=
∫
A

min
1� j �N

{txj syj
j (x)} dv(x).
The converse inequality is clear.�
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Theorem 4.1. LetLp(w) = (Lp(w1), . . . , L
p(wN)) and1�p <∞. For (�,�) ∈ Int �

set

��,�(x) =
∫ ∞

0

∫ ∞

0
min

1� j �N
{txj−�syj−�wj(x)} dt

t

ds

s
.

Then

(i) Lp(w)(�,�),p;K = Lp(��,�).
(ii) If (�,�) does not lie on any diagonal of�, thenLp(��,�) = Lp(w̌�,�).

Proof. (i) SinceLp(wj ) = �p(L1(wj )), Corollary3.1yields that

Lp(w)(�,�),p;K = �p(L1(w)(�,�),1;K).

By Lemma4.1and Fubini’s theorem, we get

‖�{|f |>y}‖L1(w)(�,�),1;K

�
∫
{|f |>y}

∫ ∞

0

∫ ∞

0
min

1� j �N
{txj−�syj−�wj(x)}dt

t

ds

s
dv(x)

=
∫
{|f |>y}

��,�(x) dv(x).

Therefore

‖f ‖p
�p(L1(w)(�,�),1;K)

�
∫ ∞

0
yp−1‖�{|f |>y}‖L1(w)(�,�),1;K

dy

=
∫ ∞

0
yp−1

(∫
{|f |>y}

��,�(x) dv(x)

)
dy = 1

p
‖f ‖pLp(��,�)

.

(ii) For any�,	 > 0, we have

��,�(x) =
∫ ∞

0

∫ ∞

0
min

1� j �N

{(
t

�

)xj−� (
s

	

)yj−�

�xj−�	yj−�wj(x)

}
dt

t

ds

s

� min
1� j �N

{�xj−�	yj−�wj(x)}
∫ ∞

0

∫ ∞

0

(
t

�

)xj−� (
s

	

)yj−�
dt

t

ds

s
.

The last integral is finite by Cobos and Peetre[15, p. 374]. Therefore, we derive

w̌�,�(x) = sup
�,	>0

[
min

1� j �N
{�xj−�	yj−�wj(x)}

]
���,�(x).

Similarly, one can check that��,��ŵ�,�. So

Lp(ŵ�,�) ↪→ Lp(w)(�,�),p;K = Lp(��,�) ↪→ Lp(w̌��). (7)

Note that no assumption on(�,�) has been used to established (7).
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Now, if (�,�) does not lie on any diagonal of�, then for any{i, j, k} ∈ P�,� the
point (�,�) is an interior point of the triangle{Pi, Pj , Pk} and so the interpolation space
(Lp(wi), L

p(wj ), L
p(wk))(�,�),p;K is well defined. According to Lemma2.1we get

∑
{i,j,k}∈P�,�

(Lp(wi), L
p(wj ), L

p(wk))(�,�),p;K ↪→ Lp(w)(�,�),p;K.

But for triples of weightedLp-spaces we know that (see[26, Theorem 8.1])

(Lp(wi), L
p(wj ), L

p(wk))(�,�),p;K = Lp(w
ci
i w

cj
j w

ck
k ),

where(ci, cj , ck) denote the barycentric coordinates of(�,�) with respect toPi, Pj , Pk.
Consequently,

∑
{i,j,k}∈P�,�

Lp(w
ci
i w

cj
j w

ck
k ) = Lp(w̌�,�) ↪→ Lp(w)(�,�),p;K = Lp(��,�).

This completes the proof.�

Remark 4.1. If (�,�) lies on some diagonal of�, then statement (ii) in Theorem4.1 is
not true in general. For example, let� be the unit square{(0, 0), (1,0), (0, 1), (1,1)}, let
� = � = 1

2, and forn ∈ N put

w1(n) = w4(n) = 1√
n
, w2(n) = w3(n) = 1

n
.

According to Cobos et al.[13], Example 2.8,

�1/2,1/2(n) =
∫ ∞

0

∫ ∞

0
min

{
t−1/2s−1/2√

n
,
t1/2s−1/2

n
,
t−1/2s1/2

n
,
t1/2s1/2√

n

}
dt

t

ds

s

� log n

n
.

Hence

(*p(w1), *
p(w2), *

p(w3), *
p(w4))(1/2,1/2),p;K = *p

(
log n

n

)
.

But

w̌1/2,1/2(n) = min

(√
1√
n

1√
n
,

√
1

n

1

n

)
= 1

n
.

Remark 4.2. Corollary3.1 and Lemma4.1 allow to describe other interpolation spaces.
For example, for anN -tuple of weightedLp,q -spaces(1 < p, q <∞) one can show that
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Lp,q(w)(�,�),q;K coincides with the space{
f :
(∫ ∞

0

∫ ∞

0

∫ ∞

0
yq−1

(∫
{|f |>y}

min
1� j �N

{txj−�syj−�wj(x)} dv(x)
)q/p

dy

×dt

t

ds

s

)1/q
<∞

}
.

Next we turn our attention toJ -interpolation formulae. The relevant weight is nowŵ�,�.
It was established in[13, Theorem 2.5], that

(L1(w1), . . . , L
1(wN))(�,�),1;J = L1(ŵ�,�). (8)

The following result describes the spaces obtained fromweightedLp-spaces for anyp > 1.

Theorem 4.2. LetLp(w) = (Lp(w1), . . . , L
p(wN)), (�,�) ∈ Int �, let 1 < p�∞ and

1/p+ 1/p′ = 1.Then

Lp(w)(�,�),p;J = Lp(��,�),

where

��,�(x) =
(∫ ∞

0

∫ ∞

0
min

1� j �N

{
txj−�syj−�

wj(x)p
′/p

}
dt

t

ds

s

)−p/p′
if p <∞

and

��,�(x) =
(∫ ∞

0

∫ ∞

0
min

1� j �N

{
txj−�syj−�

wj(x)

}
dt

t

ds

s

)−1
if p = ∞.

Moreover,if (�,�) does not lie on any diagonal of�, then

Lp(w)(�,�),p;J = Lp(ŵ�,�). (9)

Proof. Recall that for 1�r < ∞ the dual space(Lr(w))′ of (Lr(w)) is Lr ′(w−r ′/r ).
Hence, using (4),

Lp(w)(�,�),p;J = ((Lp′(w−p
′/p

1 ), . . . , Lp′(w−p
′/p

N ))(�,�),p′;K)′.

According to Theorem4.1/(i), we have(Lp′(w−p
′/p

1 ), . . . , Lp′(w−p
′/p

N ))(�,�),p′;K = Lp′

(��,�) with

��,�(x) =
∫ ∞

0

∫ ∞

0
min

1� j �N
{txj−�syj−�w

−p′/p
j (x)} dt

t

ds

s
.
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Therefore,

Lp(w)(�,�),p;J = (Lp′(��,�))
′ = Lp(��,�).

The proof of (9) is similar, but using now Theorem4.1/(ii). �

We end this section by characterizing thoseN -tuples of weightedLp-spaces for which
theK- andJ -methods coincide.

Theorem 4.3. The following are equivalent.

(i) For any (�,�)∈ Int� and for any 1�p�∞, we have Lp(w)(�,�),p;J =
Lp(w)(�,�),p;K.

(ii) There is(�0,�0) ∈ Int � which does not lie on any diagonal of� and1�p0�∞
such thatLp0(w)(�0,�0),p0;J = Lp0(w)(�0,�0),p0;K.

(iii) There are weightsv1, v2, v3 in � such that for any1�j�N we havewj � v
1−xj−yj
1

v
xj
2 v

yj
3 .

Proof. Obviously(i) ⇒ (ii ). To show that(ii ) ⇒ (iii ) choose three verticesPi0, Pj0 and
Pk0 in � such that(�0,�0) belongs to interior of the triangle{Pi0, Pj0, Pk0}. Since two
polygons related by an affine isomorphism generate the same interpolation space (see[14,
Remark 4.1]) we can assume without loss of generality thatPi0 = (0, 0), Pj0 = (1,0),
Pk0 = (0, 1).Putv1 = wi0, v2 = wj0 andv3 = wk0.

According to Theorems4.1,4.2, and (6) and (8), we have

Lp0(ŵ�0,�0) = Lp0(w)(�0,�0),p0;J = Lp0(w)(�0,�0),p0;K = Lp0(w̌�0,�0).

Whence, for any triple{i, j, k} ∈ P�0,�0, sincew̌�0,�0 �w
ci
i w

cj
j w

ck
k �ŵ�0,�0, we get

Lp0(ŵ�0,�0) = Lp0(w
ci
i w

cj
j w

ck
k ) = Lp0(w̌�0,�0).

This implies thatŵ�0,�0 � w
ci
i w

cj
j w

ck
k � w̌�0,�0, and so

w
ci
i w

cj
j w

ck
k � v

1−�0−�0
1 v

�0
2 v

�0
3 . (10)

Take anyr = 1, . . . , N with r �= i0, j0, k0. Since(�0,�0) does not lie on any diagonal of�,
the point(�0,�0) should be in the interior of one of the following triangles{Pr, Pj0, Pk0},
{Pi0, Pr , Pk0}, {Pi0, Pj0, Pr}. Let us assume, for example, that(�0,�0) ∈ Int {Pi0, Pj0, Pr}.
Since the barycentric coordinates of(�0,�0) with respect toPi0, Pj0, Pr are(

1− �0 + �0xr

yr
− �0

yr
, �0 − �0xr

yr
,
�0

yr

)
,

it follows from (10) thatwr � v
1−xr−yr
1 v

xr
2 v

yr
3 . The cases(�0,�0) ∈ {Pr, Pj0, Pk0} and

(�0,�0) ∈ {Pi0, Pr , Pk0} are analogous.

To complete the proof we will show that(iii ) ⇒ (i). Sincewj � v
1−xj−yj
1 v

xj
2 v

yj
3

(1�j�N), for any(�,�) ∈ Int �, we getŵ�,� � w̌�,� � v
1−�−�
1 v�

2v
�
3 . By (7) and (6),
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we have thatLp(w)(�,�),p;K = Lp(ŵ�,�) for any 1�p�∞.Whence, using (8), we obtain
for p = 1,

L1(w)(�,�),1;J = L1(ŵ�,�) = L1(w)(�,�),1;K.

If 1 < p�∞, working with the weights

uj = w
−p′/p
j � (v

−p′/p
1 )1−xj−yj (v−p

′/p
2 )xj (v

−p′/p
3 )yj ,

we derive that

(Lp′(u1), . . . , L
p′(uN))(�,�),p′;K = Lp′(ŵ−p

′/p
�,� ).

Finally, duality formula (4) implies that

Lp(w)(�,�),p;J = ((Lp′(u1), . . . , L
p′(uN))(�,�),p′;K)′ = Lp(ŵ�,�)

=Lp(w)(�,�),p;K. �

5. Interpolation of N -tuples of classical Lorentz spaces

In this last section we work with classical Lorentz spaces, so we take� = (0,∞)

with the usual Lebesgue measure. Let 1�p < ∞ and let�(x) > 0 be an increasing
concave function onR+ = (0,∞) such that�(0+) = 0. The classical Lorentz space�p

�

(see[24,23]) is defined as the collection of all those measurable functions onR+ such that

‖f ‖�p

�
=
(
1

p

∫ ∞

0
f ∗(x)p d�(x)

)1/p

<∞.

If � is only a quasi-concave functionwith�(0+) = 0 and� is its smallest concavemajorant
(so� � �), we put�� = ��. The casep = 1 was already considered in Example2.2. For
our purposes, it will be useful to look at the norm in the form (see[7, Theorem 2.1])

‖f ‖�p

�
=
(∫ ∞

0
yp−1�(	f (y)) dy

)1/p
.

Then‖f ‖p
�p

�
= ∫∞0 yp−1‖�{|f |>y}‖�� dy, and so�p

� = �p(��).

In what follows�p

� denotes theN -tuple of classical Lorentz spaces(�p

�1
, . . . ,�p

�N
). If

p = 1, we simply write��.

Lemma 5.1. LetA ⊂ (0,∞) be a measurable set with Lebesgue measure|A|, then
K(t, s; �A;��) � min

1� j �N
(txj syj�j (|A|)).
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Proof. Let |A| = r, since(�A)
∗ = �(0,r) and

∑
(��) is invariant under rearrangement,

K(t, s; �A;��) = K(t, s; �(0,r);��).

Given anyc > 1, let�(0,r) =
∑N

j=1 fj with fj �0 and
∑N

j=1 txj syj ‖fj‖��j
�cK(t, s; f ;

��). Then

∫ t

0
�(0,r)(x) dx =

∫ t

0


 N∑

j=1
fj



∗
(x) dx�

N∑
j=1

∫ t

0
f ∗j (x) dx (t > 0).

According to Bennett and Sharpley[3], Theorem III.2.10 and Remark III.7.6, there is an
operatorT : ��j

→ ��j
such that‖T ‖L(��j→��j )

�1 and�(0,r) =
∑N

j=1 Tf ∗j with Tf ∗j
decreasing.Thatmeans that there are 0�cj �1such that

∑N
j=1 cj = 1andTf ∗j = cj�(0,r).

Whence
N∑
j=1

txj syj cj�j (r)=
N∑
j=1

txj syj ‖Tf ∗j ‖��j
�

N∑
j=1

txj syj ‖f ∗j ‖��j

=
N∑
j=1

txj syj ‖fj‖��j
�cK(t, s; �(0,r);��).

Thus

K(t, s; �(0,r);��) � inf




N∑
j=1

txj syj cj�j (r) : 0�cj �1,
N∑
j=1

cj = 1


 .

This implies that

K(t, s; �A;��) � min
1� j �N

(txj syj�j (|A|)). �

Once we have theK-functional for�� we can proceed as in Theorem 4.1 to determine

theK-spaces generated by�p

� . The functions��,�, �̌�,�, �̂�,� are defined as in Section 4.
Note that properties of functions�j yield that��,� is also an increasing concave function
with ��,�(0+) = 0.

Theorem 5.1. Let�p

� = (�p

�1
, . . . ,�p

�N
), 1�p <∞ and let(�,�) ∈ Int �. Then

(i) (�p

�)(�,�),p;K = �p
��,� ,

(ii) If (�,�) does not lie on any diagonal of�, then(�p

�)(�,�),p;K = �p

�̌�,�
.

Proof. (i) Using that�p

�j
= �p(��j

), it follows by Corollary3.1that

(�p

�)(�,�),p;K = �p((��)(�,�),1;K).
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By Lemma5.1

‖�{|f |>y}‖(��)(�,�),1;K �
∫ ∞

0

∫ ∞

0
min

1� j �N
{txj−�syj−��j (	f (y))}

dt

t

ds

s
.

Therefore

‖f ‖p
�p((��)(�,�),1;K)

=
∫ ∞

0
yp−1‖�{|f |>y}‖(��)(�,�),1;K dy

�
∫ ∞

0
yp−1

∫ ∞

0

∫ ∞

0
min

1� j �N
{txj−�syj−��j (	f (y))}

×dt
t

ds

s
dy

=
∫ ∞

0
yp−1��,�(	f (y)) dy = ‖f ‖p�p

��,�
.

(ii) If (�,�) does not lie on any diagonal of�, then we know from Theorem4.1/(ii) that
��,� � �̌�,�, which completes the proof.�

Next we turn our attention to the J-method. We start with the caseq = 1.

Theorem 5.2. Let�� = (��1
, . . . ,��N

)and(�,�) ∈ Int �.Then(��)(�,�),1;J = ��̂�,�
.

Proof. For {i, j, k} ∈ P�,�, we put L{i,j,k} = (��i
,��j

,��k
)(�,�),1;J if (�,�) belongs to

the interior of the triangle with verticesPi, Pj , Pk, and we put

L{i,j,k} =


(��i

,��j
)�i,j ,1 if (�,�) = (1− �i,j )Pi + �i,jPj ,

(��i
,��k

)�i,k ,1 if (�,�) = (1− �i,k)Pi + �i,kPk,
(��j

,��k
)�j,k,1 if (�,�) = (1− �j,k)Pj + �j,kPk

if (�,�) belongs to any edge of the triangle. By Lemmas2.1and2.2

(��)(�,�),1;J ↪→
⋂

{i,j,k}∈P�,�

L{i,j,k}.

According toAsekritovaandKrugljak[1],Theorem1,K- andJ -methodscoincide for triples
of Banach function spaces. Hence, using Theorem5.1, we get (��i

,��j
,��k

)(�,�),1;J =
�

�
ci
i �

cj
j �

ck
k

, where(ci, cj , ck) are the barycentric coordinates of(�,�) with respect toPi,

Pj , Pk. On the other hand, by Cerdà et al.[8], Theorem 10,(��i
,��j

)�,1 = ��1−�
i ��

j
.

Whence, using that��i
∩ ��j

= �max(�i ,�j )
, we conclude that

(��)(�,�),1;J ↪→
⋂

{i,j,k}∈P�,�

L{i,j,k} = ��̂�,�
.

To establish the converse inclusion, note that the spaces��j
are rearrangement invariant

and(��)(�,�),1;J is an exact interpolation space with respect to theN -tuple��. Hence,
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by Bennett and Sharpley[3], Theorem III.2.12, we obtain that(��)(�,�),1;J is rearrange-
ment invariant. Let� be its fundamental function. By Cobos and Fernández-Martinez[10],
Theorem 1.3

�(r) = ‖�(0,r)‖(��)(�,�),1;J

� max
{i,j,k}∈P�,�

{‖�(0,r)‖ci��i
‖�(0,r)‖cj��j

‖�(0,r)‖ck��k
}��̂�,�(r).

This implies that��̂�,�
↪→ �� ↪→ (��)(�,�),1;J and completes the proof.�

We finish the paper by studying the case 1< p < ∞. First note that for any Banach
N -tuple Ā = (A1, . . . , AN) and any 0< � �= 1 the spaceĀ(�,�),q;J is formed by all
elementsa ∈∑(Ā) which can be represented asa =∑

(m,n)∈Z2 um,n with um,n ∈ �(Ā)

and
(∑

(m,n)∈Z2(�−�m−�nJ (�m, �n; um,n))q
)1/q

<∞.Moreover‖ ·‖(�,�),q;J is equivalent
to

‖a‖∼
(�,�),q;J = inf




 ∑
(m,n)∈Z2

(�−�m−�nJ (�m, �n; um,n))q



1/q

: a =
∑

(m,n)∈Z2

um,n


 .

We shall need the following auxiliary result.

Lemma 5.2. Let X̄ = (X1, . . . , XN) be a BanachN -tuple of r.i. spaces on(0,∞) and,
for 1< r <∞, let X̄(r) = (X

(r)
1 , . . . , X

(r)
N ) be theN -tuple formed by the convexifications.

Then

(X̄(�,�),1;J)(r) ↪→ (X̄(r))(�,�),r;J .

Proof. Given anyf ∈ (X̄(�,�),1;J)(r) we can find a representation|f |r =∑
(m,n)∈Z2 um,n

with 
 ∑
(m,n)∈Z2

2−�m−�nJ (2m, 2n; um,n; X̄)



1/r

�c‖|f |r‖1/r
X̄(�,�),1;J

.

SinceJ (2m, 2n; um,n; X̄) = J (2
m
r , 2

n
r ; |um,n|1/r; X̄(r))r , we can write the above inequal-

ity as
 ∑
(m,n)∈Z2

(2−
�m
r
−�n

r J (2
m
r , 2

n
r ; |um,n|1/r; X̄(r)))r




1/r

�c‖f ‖(X̄(�,�),1;J )(r) .

Putting� = 21/r andvm,n = |um,n|1/r, we get
 ∑
(m,n)∈Z2

(�
−�m−�n

J (�m, �n; vm,n; X̄(r)))r




1/r

�c‖f ‖(X̄(�,�),1;J )(r) .
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This implies thatg = ∑
(m,n)∈Z2 vm,n belongs to(X̄(r))(�,�),r;J with ‖g‖(X̄(r))(�,�),r;J �

c1‖f ‖(X̄(�,�),1;J )(r) . Since

|f | =

 ∑
(m,n)∈Z2

um,n




1/r

�
∑

(m,n)∈Z2

|um,n|1/r =
∑

(m,n)∈Z2

vm,n = g

and(X̄(r))(�,�),r;J is rearrangement invariant (the same argument as for�1(w)(�,�),1;J ap-
plies),weconclude thatf belong to(X̄(r))(�,�),r;J with‖f ‖(X̄(r))(�,�),r;J �c1‖f ‖(X̄(�,�),1;J )(r) .
�

Now we are ready for the description ofJ -spaces when 1< p <∞.

Theorem 5.3. Let �p

� = (�p

�1
, . . . ,�p

�N
), let 1 < p < ∞ and let(�,�) ∈ Int � such

that (�,�) does not lie on any diagonal of�, then

(�p

�)(�,�),p;J = �p

�̂�,�
.

Proof. Since�p

�j
= (��j

)(p) (j = 1, . . . , N), by the previous lemma and Theorem5.2

we get that

�p

�̂�,�
= (��̂�,�

)(p) = ((��)(�,�),1;J)(p) ↪→ (�p

�)(�,�),p;J .

To establish the converse embedding we can proceed as in the first part of Theorem5.2
because, by the assumption on(�,�), for any{i, j, k} ∈ P�,� the point(�,�) belongs to
the interior of the triangle with verticesPi, Pj , Pk. �

Acknowledgments

This research was partially carried out while J.Martin was visiting the Departamento de
Análisis Matemático at the Universidad Complutense de Madrid.

References

[1] I. Asekritova, N. Krugljak, On equivalence ofK- andJ - methods for(n+1)-tuples of Banach spaces, Studia
Math. 122 (1997) 99–116.

[2] I. Asekritova, N. Krugljak, L. Maligranda, L. Nikolova, L.-E. Persson, Lions–Peetre reiteration formulas for
triples and their applications, Studia Math. 145 (2001) 219–254.

[3] C. Bennett, B. Sharpley, Interpolation of Operators, Academic Press, NewYork, 1988.
[4] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
[5] Y. Brudnyıˇ, N. Krugljak, Interpolation functors and interpolation spaces, vol. 1, North-Holland,Amsterdam,

1991.
[6] M.J. Carro, L.I. Nikolova, J. Peetre, L.-E. Persson, Some real interpolation methods for families of Banach

spaces: a comparison, J. Approx. Theory 89 (1997) 26–57.



F. Cobos, J. Martín / Journal of Approximation Theory 132 (2005) 182–203 203

[7] M.J. Carro, J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112 (1993) 480–494.
[8] J. Cerdà, H. Coll, J. Martín, Entropy function spaces and interpolation, J. Math. Anal. Appl., accepted.
[9] F. Cobos, P. Fernández–Martínez, Reiteration and a Wolff theorem for interpolation methods defined by

means of polygons, Studia Math. 102 (1992) 239–256.
[10] F. Cobos, P. Fernández–Martínez, A duality theorem for interpolation methods associated to polygons, Proc.

Amer. Math. Soc. 121 (1994) 1093–1101.
[11] F. Cobos, P. Fernández–Martínez, A. Martínez, On reiteration and the behavior of weak compactness under

certain interpolation methods, Collect. Math. 50 (1999) 53–72.
[12] F. Cobos, P. Fernández–Martínez, A. Martínez, Y. Raynaud, On duality betweenK- andJ -spaces, Proc.

Edinburgh Math. Soc. 42 (1999) 43–63.
[13] F. Cobos, P. Fernández-Martínez, T. Schonbek, Norm estimates for interpolation methods defined by means

of polygons, J. Approx. Theory 80 (1995) 321–351.
[14] F. Cobos, T. Kühn, T. Schonbek, One-sided compactness results for Aronszajn–Gagliardo functors, J. Funct.

Anal. 106 (1992) 274–313.
[15] F. Cobos, J. Peetre, Interpolation of compact operators: the multidimensional case, Proc. London Math. Soc.

63 (1991) 371–400.
[16] M. Cwikel, S. Janson, Real and complex interpolation methods for finite and infinite families of Banach

spaces, Adv. Math. 66 (1987) 234–290.
[17] S. Ericsson, Certain reiteration and equivalence results for the Cobos–Peetre polygon interpolation method,

Math. Scand. 85 (1999) 301–319.
[18] A. Favini, Su una estensione del metodo d’interpolazione complesso, Rend. Sem. Mat. Univ. Padova 47

(1972) 243–298.
[19] D.L. Fernandez, Interpolation of 2n Banach spaces, Studia Math. 45 (1979) 175–201.
[20] D.L. Fernandez, Interpolation of 2d Banach spaces and the Calderón spaceX(E), Proc. London Math. Soc.

56 (1988) 143–162.
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